132 resultados para 060102 Bioinformatics

em Indian Institute of Science - Bangalore - Índia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and Purpose: Withanolides are naturally occurring chemical compounds. They are secondary metabolites produced via oxidation of steroids and structurally consist of a steroid-backbone bound to a lactone or its derivatives. They are known to protect plants against herbivores and have medicinal value including anti-inflammation, anti-cancer, adaptogenic and anti-oxidant effects. Withaferin A (Wi-A) and Withanone (Wi-N) are two structurally similar withanolides isolated from Withania somnifera, also known as Ashwagandha in Indian Ayurvedic medicine. Ashwagandha alcoholic leaf extract (i-Extract), rich in Wi-N, was shown to kill cancer cells selectively. Furthermore, the two closely related purified phytochemicals, Wi-A and Wi-N, showed differential activity in normal and cancer human cells in vitro and in vivo. We had earlier identified several genes involved in cytotoxicity of i-Extract in human cancer cells by loss-of-function assays using either siRNA or randomized ribozyme library. Methodology/Principal Findings: In the present study, we have employed bioinformatics tools on four genes, i.e., mortalin, p53, p21 and Nrf2, identified by loss-of-function screenings. We examined the docking efficacy of Wi-N and Wi-A to each of the four targets and found that the two closely related phytochemicals have differential binding properties to the selected cellular targets that can potentially instigate differential molecular effects. We validated these findings by undertaking parallel experiments on specific gene responses to either Wi-N or Wi-A in human normal and cancer cells. We demonstrate that Wi-A that binds strongly to the selected targets acts as a strong cytotoxic agent both for normal and cancer cells. Wi-N, on the other hand, has a weak binding to the targets; it showed milder cytotoxicity towards cancer cells and was safe for normal cells. The present molecular docking analyses and experimental evidence revealed important insights to the use of Wi-A and Wi-N for cancer treatment and development of new anti-cancer phytochemical cocktails.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rich data bearing on the structural and evolutionary principles of protein protein interactions are paving the way to a better understanding of the regulation of function in the cell. This is particularly the case when these interactions are considered in the framework of key pathways. Knowledge of the interactions may provide insights into the mechanisms of crucial `driver' mutations in oncogenesis. They also provide the foundation toward the design of protein protein interfaces and inhibitors that can abrogate their formation or enhance them. The main features to learn from known 3-D structures of protein protein complexes and the extensive literature which analyzes them computationally and experimentally include the interaction details which permit undertaking structure-based drug discovery, the evolution of complexes and their interactions, the consequences of alterations such as post-translational modifications, ligand binding, disease causing mutations, host pathogen interactions, oligomerization, aggregation and the roles of disorder, dynamics, allostery and more to the protein and the cell. This review highlights some of the recent advances in these areas, including design, inhibition and prediction of protein protein complexes. The field is broad, and much work has been carried out in these areas, making it challenging to cover it in its entirety. Much of this is due to the fast increase in the number of molecules whose structures have been determined experimentally and the vast increase in computational power. Here we provide a concise overview. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During 11-12 August 2014, a Protein Bioinformatics and Community Resources Retreat was held at the Wellcome Trust Genome Campus in Hinxton, UK. This meeting brought together the principal investigators of several specialized protein resources (such as CAZy, TCDB and MEROPS) as well as those from protein databases from the large Bioinformatics centres (including UniProt and RefSeq). The retreat was divided into five sessions: (1) key challenges, (2) the databases represented, (3) best practices for maintenance and curation, (4) information flow to and from large data centers and (5) communication and funding. An important outcome of this meeting was the creation of a Specialist Protein Resource Network that we believe will improve coordination of the activities of its member resources. We invite further protein database resources to join the network and continue the dialogue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recognizing similarities and deriving relationships among protein molecules is a fundamental requirement in present-day biology. Similarities can be present at various levels which can be detected through comparison of protein sequences or their structural folds. In some cases similarities obscure at these levels could be present merely in the substructures at their binding sites. Inferring functional similarities between protein molecules by comparing their binding sites is still largely exploratory and not as yet a routine protocol. One of the main reasons for this is the limitation in the choice of appropriate analytical tools that can compare binding sites with high sensitivity. To benefit from the enormous amount of structural data that is being rapidly accumulated, it is essential to have high throughput tools that enable large scale binding site comparison. Results: Here we present a new algorithm PocketMatch for comparison of binding sites in a frame invariant manner. Each binding site is represented by 90 lists of sorted distances capturing shape and chemical nature of the site. The sorted arrays are then aligned using an incremental alignment method and scored to obtain PMScores for pairs of sites. A comprehensive sensitivity analysis and an extensive validation of the algorithm have been carried out. A comparison with other site matching algorithms is also presented. Perturbation studies where the geometry of a given site was retained but the residue types were changed randomly, indicated that chance similarities were virtually non-existent. Our analysis also demonstrates that shape information alone is insufficient to discriminate between diverse binding sites, unless combined with chemical nature of amino acids. Conclusion: A new algorithm has been developed to compare binding sites in accurate, efficient and high-throughput manner. Though the representation used is conceptually simplistic, we demonstrate that along with the new alignment strategy used, it is sufficient to enable binding comparison with high sensitivity. Novel methodology has also been presented for validating the algorithm for accuracy and sensitivity with respect to geometry and chemical nature of the site. The method is also fast and takes about 1/250(th) second for one comparison on a single processor. A parallel version on BlueGene has also been implemented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Japanese encephalitis virus (JEV) envelope (E) protein has been shown to play a critical role in attachment to cells. However, the receptor interacting with envelope protein has not been conclusively identified. Using mouse neuroblastoma (Neuro2a) cells and purified JEV-E protein in `Virus Overlay Protein Binding Assay' followed by MALDI-TOF analysis, we identified `heat shock protein 70' (Hsp70) as a possible receptor for JEV. Indirect immunofluorescence and flow-cytometry analysis demonstrated localization of Hsp70 on Neuro2a cell surface. Co-immunoprecipitation followed by Western blot analysis reconfirmed the interaction between Hsp70 and JEV-E protein. Further, anti-Hsp70 polyclonal-antibodies were able to block JEV entry into Neuro2a cells. Additionally, using the bioinformatic tool - FTDOCK, clocking between the proteins was performed. Amongst six interacting structural poses studied one pose involving RGD motif on JEV-E and leucine(539) on Hsp70 displayed stable interaction. These observations indicate that Hsp70 serves as putative receptor for JEV in Neuro2A cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA obtained from a human sputum isolate of Mycobacterium tuberculosis, NTI-64719, which showed extensive dissemination in the guinea pig model resulting in a high score for virulence was used to construct an expression library in the lambda ZAP vector. The size of DNA inserts in the library ranged from 1 to 3 kb, and recombinants represented 60% of the total plaques obtained. When probed with pooled serum from chronically infected tuberculosis patients, the library yielded 176 recombinants with a range of signal intensities. Among these, 93 recombinants were classified into 12 groups on the basis of DNA hybridization experiments, The polypeptides synthesized by the recombinants were predominantly LacZ fusion proteins, Serum obtained from patients who were clinically diagnosed to be in the early phase of M. tuberculosis infection was used to probe the 176 recombinants obtained. interestingly, some recombinants that gave very strong signals in the original screen did not react with early-phase serum; conversely, others whose signals were extremely weak in the original screen gave very intense signals with serum from recently infected patients, This indicates the differential nature of either the expression of these antigens or the immune response elicited by them as a function of disease progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Uroporphyrinogen decarboxylase (UROD) is a key enzyme in the heme-biosynthetic pathway and in Plasmodium falciparum it occupies a strategic position in the proposed hybrid pathway for heme biosynthesis involving shuttling of intermediates between different subcellular compartments in the parasite. In the present study, we demonstrate that an N-terminally truncated recombinant P. falciparum UROD (r(Δ)PfUROD) over-expressed and purified from Escherichia coli cells, as well as the native enzyme from the parasite were catalytically less efficient compared with the host enzyme, although they were similar in other enzyme parameters. Molecular modeling of PfUROD based on the known crystal structure of the human enzyme indicated that the protein manifests a distorted triose phosphate isomerase (TIM) barrel fold which is conserved in all the known structures of UROD. The parasite enzyme shares all the conserved or invariant amino acid residues at the active and substrate binding sites, but is rich in lysine residues compared with the host enzyme. Mutation of specific lysine residues corresponding to residues at the dimer interface in human UROD enhanced the catalytic efficiency of the enzyme and dimer stability indicating that the lysine rich nature and weak dimer interface of the wild-type PfUROD could be responsible for its low catalytic efficiency. PfUROD was localised to the apicoplast, indicating the requirement of additional mechanisms for transport of the product coproporphyrinogen to other subcellular sites for its further conversion and ultimate heme formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Tuberculosis still remains one of the largest killer infectious diseases, warranting the identification of newer targets and drugs. Identification and validation of appropriate targets for designing drugs are critical steps in drug discovery, which are at present major bottle-necks. A majority of drugs in current clinical use for many diseases have been designed without the knowledge of the targets, perhaps because standard methodologies to identify such targets in a high-throughput fashion do not really exist. With different kinds of 'omics' data that are now available, computational approaches can be powerful means of obtaining short-lists of possible targets for further experimental validation. Results: We report a comprehensive in silico target identification pipeline, targetTB, for Mycobacterium tuberculosis. The pipeline incorporates a network analysis of the protein-protein interactome, a flux balance analysis of the reactome, experimentally derived phenotype essentiality data, sequence analyses and a structural assessment of targetability, using novel algorithms recently developed by us. Using flux balance analysis and network analysis, proteins critical for survival of M. tuberculosis are first identified, followed by comparative genomics with the host, finally incorporating a novel structural analysis of the binding sites to assess the feasibility of a protein as a target. Further analyses include correlation with expression data and non-similarity to gut flora proteins as well as 'anti-targets' in the host, leading to the identification of 451 high-confidence targets. Through phylogenetic profiling against 228 pathogen genomes, shortlisted targets have been further explored to identify broad-spectrum antibiotic targets, while also identifying those specific to tuberculosis. Targets that address mycobacterial persistence and drug resistance mechanisms are also analysed. Conclusion: The pipeline developed provides rational schema for drug target identification that are likely to have high rates of success, which is expected to save enormous amounts of money, resources and time in the drug discovery process. A thorough comparison with previously suggested targets in the literature demonstrates the usefulness of the integrated approach used in our study, highlighting the importance of systems-level analyses in particular. The method has the potential to be used as a general strategy for target identification and validation and hence significantly impact most drug discovery programmes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We had earlier proposed a hypothesis to explain the mechanism of perpetuation of immunological memory based on the operation of idiotypic network in the complete absence of antigen. Experimental evidences were provided for memory maintenance through anti-idiotypic antibody (Ab2) carrying the internal image of the antigen. In the present work, we describe a structural basis for such memory perpetuation by molecular modeling and structural analysis studies. A three-dimensional model of Ab2 was generated and the structure of the antigenic site on the hemagglutinin protein H of Rinderpest virus was modeled using the structural template of hemagglutinin protein of Measles virus. Our results show that a large portion of heavy chain containing the CDR regions of Ab2 resembles the domain of the hemagglutinin housing the epitope regions. The similarity demonstrates that an internal image of the H antigen is formed in Ab2, which provides a structural basis for functional mimicry demonstrated earlier. This work brings out the importance of the structural similarity between a domain of hemagglutinin protein to that of its corresponding Ab2. It provides evidence that Ab2 is indeed capable of functioning as surrogate antigen and provides support to earlier proposed relay hypothesis which has provided a mechanism for the maintenance of immunological memory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We had earlier proposed a hypothesis to explain the mechanism of perpetuation of immunological memory based on the operation of idiotypic network in the complete absence of antigen. Experimental evidences were provided for memory maintenance through anti-idiotypic antibody (Ab(2)) carrying the internal image of the antigen. In the present work, we describe a structural basis for such memory perpetuation by molecular modeling and structural analysis studies. A three-dimensional model of Ab(2) was generated and the structure of the antigenic site on the hemagglutinin protein H of Rinderpest virus was modeled using the structural template of hemagglutinin protein of Measles virus. Our results show that a large portion of heavy chain containing the CDR regions of Ab(2) resembles the domain of the hemagglutinin housing the epitope regions. The similarity demonstrates that an internal image of the H antigen is formed in Ab(2), which provides a structural basis for functional mimicry demonstrated earlier. This work brings out the importance of the structural similarity between a domain of hemagglutinin protein to that of its corresponding Ab(2). It provides evidence that Ab(2) is indeed capable of functioning as surrogate antigen and provides support to earlier proposed relay hypothesis which has provided a mechanism for the maintenance of immunological memory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New antiretroviral drugs that offer large genetic barriers to resistance, such as the recently approved inhibitors of HIV-1 protease, tipranavir and darunavir, present promising weapons to avert the failure of current therapies for HIV infection. Optimal treatment strategies with the new drugs, however, are yet to be established. A key limitation is the poor understanding of the process by which HIV surmounts large genetic barriers to resistance. Extant models of HIV dynamics are predicated on the predominance of deterministic forces underlying the emergence of resistant genomes. In contrast, stochastic forces may dominate, especially when the genetic barrier is large, and delay the emergence of resistant genomes. We develop a mathematical model of HIV dynamics under the influence of an antiretroviral drug to predict the waiting time for the emergence of genomes that carry the requisite mutations to overcome the genetic barrier of the drug. We apply our model to describe the development of resistance to tipranavir in in vitro serial passage experiments. Model predictions of the times of emergence of different mutant genomes with increasing resistance to tipranavir are in quantitative agreement with experiments, indicating that our model captures the dynamics of the development of resistance to antiretroviral drugs accurately. Further, model predictions provide insights into the influence of underlying evolutionary processes such as recombination on the development of resistance, and suggest guidelines for drug design: drugs that offer large genetic barriers to resistance with resistance sites tightly localized on the viral genome and exhibiting positive epistatic interactions maximally inhibit the emergence of resistant genomes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of invariant water molecules in the activity of plant cysteine protease is ubiquitous in nature. On analysing the 11 different Protein DataBank (PDB) structures of plant thiol proteases, the two invariant water molecules W I and W2 (W220 and W222 in the template 1PPN structure) were observed to form H-bonds with the Ob atom of Asn 175. Extensive energy minimization and molecular dynamics simulation studies up to 2 ns on all the PDB and solvated structures clearly revealed the involvement of the H-bonding association of the two water molecules in fixing the orientation of the asparagine residue of the catalytic triad. From this study, it is suggested that H-bonding of the water molecule at the W1 invariant site better stabilizes the Asn residue at the active site of the catalytic triad.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amino acid sequences are known to constantly mutate and diverge unless there is a limiting condition that makes such a change deleterious. However, closer examination of the sequence and structure reveals that a few large, cryptic repeats are nevertheless sequentially conserved. This leads to the question of why only certain repeats are conserved at the sequence level. It would be interesting to find out if these sequences maintain their conservation at the three-dimensional structure level. They can play an active role in protein and nucleotide stability, thus not only ensring proper functioning but also potentiating malfunction and disease. Therefore, insights into any aspect of the repeats - be it structure, function or evolution - would prove to be of some importance. This study aims to address the relationship between protein sequence and its three-dimensional structure, by examining if large cryptic sequence repeats have the same structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Systems level modelling and simulations of biological processes are proving to be invaluable in obtaining a quantitative and dynamic perspective of various aspects of cellular function. In particular, constraint-based analyses of metabolic networks have gained considerable popularity for simulating cellular metabolism, of which flux balance analysis (FBA), is most widely used. Unlike mechanistic simulations that depend on accurate kinetic data, which are scarcely available, FBA is based on the principle of conservation of mass in a network, which utilizes the stoichiometric matrix and a biologically relevant objective function to identify optimal reaction flux distributions. FBA has been used to analyse genome-scale reconstructions of several organisms; it has also been used to analyse the effect of perturbations, such as gene deletions or drug inhibitions in silico. This article reviews the usefulness of FBA as a tool for gaining biological insights, advances in methodology enabling integration of regulatory information and thermodynamic constraints, and finally addresses the challenges that lie ahead. Various use scenarios and biological insights obtained from FBA, and applications in fields such metabolic engineering and drug target identification, are also discussed. Genome-scale constraint-based models have an immense potential for building and testing hypotheses, as well as to guide experimentation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Checkpoint-1 kinase plays an important role in the G(2)M cell cycle control, therefore its inhibition by small molecules is of great therapeutic interest in oncology. In this paper, we have reported the virtual screening of an in-house library of 2499 pyranopyrazole derivatives against the ATP-binding site of Chk1 kinase using Glide 5.0 program, which resulted in six hits. All these ligands were docked into the site forming most crucial interactions with Cys87, Glu91 and Leu15 residues. From the observed results these ligands are suggested to be potent inhibitors of Chk1 kinase with sufficient scope for further elaboration.